On Freeness Theorem of the Adjoint Bundle on a Normal Surface

نویسنده

  • Takeshi Kawachi
چکیده

The adjoint linear system on a surface have been studied by many authors. Among these, Reider’s criterion on a smooth surface is very famous. Here we prove a similar criterion on normal surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective Base Point Freeness on a Normal Surface

We prove effective base point freeness of the adjoint linear system on normal surfaces with a boundary.

متن کامل

Taguchi Approach and Response Surface Analysis for Design of a High-performance Single-walled Carbon Nanotube Bundle Interconnects in a Full Adder

In this study, it was attempted to design a high-performance single-walled carbon nanotube (SWCNT) bundle interconnects in a full adder. For this purpose, the circuit performance was investigated using simulation in HSPICE software and considering the technology of 32-nm. Next, the effects of geometric parameters including the diameter of a nanotube, distance between nanotubes in a bundle, and ...

متن کامل

Supercyclic tuples of the adjoint weighted composition operators on Hilbert spaces

We give some sufficient conditions under which the tuple of the adjoint of weighted composition operators $(C_{omega_1,varphi_1}^*‎ , ‎C_{omega_2,varphi_2}^*)$ on the Hilbert space $mathcal{H}$ of analytic functions is supercyclic‎.

متن کامل

On Polarized Surfaces of Low Degree Whose Adjoint Bundles Are Not Spanned

Smooth complex surfaces polarized with an ample and globally generated line bundle of degree three and four, such that the adjoint bundle is not globally generated, are considered. Scrolls of a vector bundle over a smooth curve are shown to be the only examples in degree three. Two classes of examples in degree four are presented, one of which is shown to characterize regular such pairs. A Reid...

متن کامل

L_1 operator and Gauss map of quadric surfaces

The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996